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Abstract The giant magnetomistance effect in magnetic superlattices for h e  c m t  
Perpendicular to and in the layer planes is studied within a unified semiclassical approach 
that is based on the Boltzmann equation with exact boundary conditions for the spindependent 
distribution functions of elechons. Interface processes responsible for he magnetoresistance 
are found to be different in these geometries, and this can result in an essential difference 
in general behaviour between k- in-plane magnetoresistance and the perpendicular-plane one 
A "elation between the giant magnetoresistance and the multilayer magnetization is also 
discussed. 

1. Introdoction 

There has been great interest recently in magnetic superlattices displaying a wide array 
of fascinating properties. The most attmctive phenomenon is the giant magnetoresistance 
(GMR) effect in which there is a drastic decrease in the multilayer resistance when the 
magnetic ordering of the superlattice is changed by the application of an external magnetic 
field [l]. In the majority of experiments the current flows in a direction parallel to the 
layer planes and by now an extensive literature has evolved that traces the GMR for the 
CIP (current-in-plane) geomeh-y (see, for example, review [2] and references therein). In 
contrast, few experiments have been performed with the current flowing perpendicular to 
the layer planes (CPP geometry) 13-51. When experimental ~ U I U  for the UP geometry are 
compared with those for the CPP geometry, it is apparent that. although both the CIP-GMR 
and the CPP-GMR result from spin-dependent scattering, the former differs essentially from 
the latter in general behaviour (GMR magnitude, magnetic field dependence, temperature 
dependence). To gain some insight into what governs this difference, they should both be 
considered within a unified theory. 

Whereas the theoretical understanding of the in-plane GMR has been greatly advanced 
and both semiclassical [6] and quantum [7,81 models have been worked out in detail, few 
papers have been concerned with the CPP-GMR theory [9-121. The main difficulty for a 
theoretical description arises from the necessity to take into account a spin accumulation 
effect and an electric field inhomogeneity tba1 are characteristic of the CPP geometry. 

The problem has been considered in some detail by Valet and Fert [12]. Their model 
is based on the Boltzmann kinetic equation with spin-dependent (no spin-flip) and spin-flip 
bulk scattering and accounts for interface scattering through phenomenological macroscopic 
parameters designating spin-dependent interface scattering. Unfortunately, their account of 
interface scattering is too crude to be used in a derivation of the unified theory. 

In this paper we give a comparative description of the GMR in both geometries on 
the basis of a unified microscopic model within a semiclassical approach and analyse the 
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correlation between the magnetoresistance p and the superlattice magnetization M. As 
opposed to [12], the interaction of conduction electrons with the interfaces is described 
through exact boundary conditions for the spin-dependent distribution function of electrons. 

V V Ustinov and E A Kravtsov 

2. Basic equations 

Let us consider an infinite. superlattice consisting of single-domain ferromagnetic layers 
with magnetic moments Mi in the layer space, each layer being L in thickness. The 
non-magnetic-interlayer thickness is assumed negligible compared with L. Neighbouring 
magnetic moments Mi and M;+[ will be considered antiparallel in the initial state 
(figure l(a)).  An external magnetic field H applied in the layer plane rotates the magnetic 
moments to the parallel arrangement and changes the angle B = B ( H )  between Mi and 
Mi+l (figures l(b) and (c)) .  The relative superlattice magnetization p is given by 

where M, is the saturation magnetization. 

b C a 
Figure 1. The coordinate system and the model of the superlattice used in our study. (a) 
Initially the neighbouring layers are magnetized antiparallel. (b)  When applied magnetic field 
H is less than the satumtion field H,. the neighbouring magnetizations are lofated lhrough an 
angle 0 c B c k relative to each othher. (c) If magnetic field is strong enough (H > I f s ) ,  the 
magnctizmions are forced to lie in the parallel m g e m e n t .  

We introduce the maximum magnetoresistance ratio AG as 

AG = [pC(Hs) - pG(o)l/~G(0) (2) 

where Hs is the saturation field, and a dimensionless function @(H) describing the field 
dependence of the magnetoresistance 

S G W  = I P G ( H )  - /JG(O)l/IpG(%) - PG(0)l. (3) 

Here G defines the geometry under discussion (CIP or CPP). Having obtained S G ( H )  and 
p(H) from experimental p G ( H )  and M ( H )  dependences, one can find acorrelation between 
SG and I.L and eliminate the common variable H. When experimental data are represented 
in the form S(p2), they should be compared with results of the present theory to estimate 
microscopic parameters of the theory, as has been demonstrated with the CIP geometry in 

Let ~ ~ ( k )  be a spectrum of conduction electrons with spin opposite to M; (U = +) 
or along Mi (a = -) in the ferromagnetic metal and A+ be corresponding Fermi 

1131. 
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surfaces defined by the equations ~ ~ ( k )  = ( in the quasi-momentum space, ( being the 
chemical potential. Transport properties of the ferromagnet depend on the electron velocity 
v = fak at the Fermi surface and the intralayer relaxation time of momentum 7,. 

The rigorous semiclassical fxatment of the superlattice response to an applied electric 
field E requires solving a system of equations for non-equilibrium parts of the distribution 
function in each layer q5$)(x, k) together with a set of boundary conditions that establish 
a link between the distribution function of electrons moving away from the boundary and 
that of electrons incident on the boundary from both layers. Such boundary conditions have 
been derived in [14]. 

The equation for 4:) in the relaxation-time approximation takes the form 

u,a$:)/ax + e v  . E ( x ) ~ ( E ~  - I) = -(#) - (@))fro (4) 

where. (q5:)) is the local-equilibrium part from 4:) defined by 

(q5$)} = 6 ( ~ ,  - () dkq5:) dkB(Ea - 5 ) .  (5 ) S IS 
The integrals in (5) are taken over the Fermi surface. In the subsequent discussion, as we are 
interested in formulating a realistic model of the GMR, we ignore intralayer spin-relaxation 
processes, and the layer thickness L is assumed to be far less than the spin-diffusion length. 

To write the boundary conditions, we introduce quantities characterizing the interaction 
of  electrons with the interface. Let R, (&) be the specular (diffusive) reflection probability 
for an electron of spin a and To,, (Q,,,) be the probability for an electron of spin UI 

(with respect to the magnetization Mi) in layer i to pass coherently (diffusively) through 
the interface into spin state U* (with respect to Mi+,) in layer i f l .  The quantities introduced 
are subject to the normalization condition 

Rv + Too + T(,)r + Pe + Qoc + Q(-o)c = 1. (6) 

The boundary condition at the interface x =xi can be written in the form: 

q5:)Wz) = Roq5:)(-kz) + T&,@:l-l)(kx) + k'o(q5:)(-kx))u,<o 
U, 

where kr is the x component of momentum at the Fermi surface with U, z 0, and brackets 
(. . .)uz,o denote averaging in a matter like (5) over the part of the Fermi surface with 
U, > 0. The boundary condition (7) provides the continuity of streams of particles through 
the interface [ 141. 

Having found the various q5 from (4H7), one can calculate the non-equilibrium charge 
density n(x) and the current density j(x) by using 
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The calculation techniques to be used are different for different geometries. In the CIP 
geometry 0’ 11 02) the electric field EO is uniform but there is non-uniform current density 
j. Having averaged j ( x )  over the layer thickness 

one obtains the conductivity &Ip and the specific resistance pap as 

(10) 

As to the CPP geometry (j 11 OX), we have uniform current density jo but non-uniform 
electric field E @ ) .  The charge density n ( x )  given by (8) is a functional of E ( x ) .  By 
introducing the electrostatic potential V(x) through the equation E ( x )  = -dV(x)/dx and 
using the Poisson equation dzV(x)/dx2 = -47rn(x), we come to a differential equation 
for V ( x )  to be solved within the layer x ,  < x < x, + L. The total distribution of V ( x )  
throughout the multilayer can be deduced by analogy. The specific resistance is defined by 

J = = (ucIP)-I, 

p p  = [V(-L/2) - V(L/2)1/% (11) 

The fundamental difference between the CIP and CPP problems is in the existence of 
charge accumulation near the interfaces in the latter case. The charge screening effects give 
rise to sharp short-range inhomogeneities of the electric potential, field, etc. The unique 
damping length of the inhomogeneities is the Debye screening length r D ,  which should 
amount to several angstroms for usual metals. If rD and L are of the same order, one would 
expect to find unusual transport properties of the superlattice. If this is not the case and 
L >> rD. the magnetoresistance is little affected by the specific behaviour of the potential 
near the interfaces. According to the usual approach, the potential can be treated as if it 
had jumps at the interfaces x = xi [12]. In this approximation the position dependence of 
V ( x )  can be evaluated from the equation n ( x )  = 0 instead of the Poisson equation. 

3. The CIP and CPP giant magnetoresistance: a resistance scheme for an arbitrary 
angle between the layer magnetizations 

The Fermi surface having a complicated form in femomagnets, one of the main difficulties 
encountered in the calculation is to take integrals over the Fermi surfaces A+ and A-. To 
obtain an analytical expression of the GMR, we have to take one or other simple model of 
the electron spectrum. In our approach the electron energy spectrum ~ , ( k )  is assumed to 
have the form corresponding to the octahedral model of the Fermi surface: 

E * @ )  = U*(lkXl t lkyl t RI) F E P  (12) 

where E* is the spin-splitting energy. The key feature of the model (12) is in the 
independence of the Fermi velocity of electrons from k. To simplify the calculation, in 
the following we also ignore any difference between the Fermi velocities and the Fermi- 
surface areas for electrons of opposite spin: A+ = A- = A, U+ = U- = UF. However, our 
calculation can be extended without essential change to the general case. 
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The analytical formulae for the CP-GMR in the model (12) have been obtained in [13]. 
It can be shown that the resistivity pG has the same form in both the CIP and CPP geometies: 

Here the 'effective resistivity' p z  is given by the sum 

P," = P* +r,o (14) 
where pv = ( 2 a 7 ~ ) ~ / e ~ A u ~ r ,  is the resistivity of the spin-snbzone U in the bulk ferromagnet 
and r," is an interface contribution. The resistivity p$x has been introduced to take into 
account 'mixing' processes, which are due to the transmission of electrons between layers 
with different M .  The formula of equation (13) corresponds to the resistance scheme of 
figure 2. 

-"SI- p,. 

F i p  2 Resistor network malogy for the magnetoresiswnce of equation (13). 

Being considered in different geome~es ,  the interface contributions to p," and p& are 
determined by different combinations of probabilities P ,  R, Q and T .  In the case of the 
CPP geometry the total penetration probabilities WO = To, + Q,, and W = T+- + Q+ 
that describe the electron transmission from spin-subzone U in one layer to spin-subzone U 

and ( -U)  respectively in the neighbouring layer are of importance: 

where rL = ( 2 ~ f i ) ~ / e ' A L .  With the CP problem, only the total probability of the diffusive 
scattering S, = P, + Qoo + Q+,),, and the factor T+- are crucial: 

r,"" = SorL (17) 

p:: = T+-rL. (18) 
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4. The U P  and CPP magnetoresistance: the angular dependence 

To obtain the magnetoresistance versus magnetization dependence, we have to specify the 
angular dependence of the probabilities in equations ( l S ) q l 8 ) .  To this end, we identify first 
the angular dependence that is due to rotating the spin quantization direction of an electron 
in travelling from one layer to its neighbour. It is easy to show 1131 that, being equal to 1 
in the initial system of coordinates, the probability q of finding an electron with spin along 
the magnetization M in a new system rotated through an angle 0 is equal to 7 = cosz(0/2). 

V V Ustinov and E A Kravtsov 

Generally, the penetration probabilities can be represented in the form: 

To,(@ = To(@ cos2(8/2) 

Q,,W = Q.@)cosZ(0/2) 

Tr(+(0) = To(@ sin2(0/2) 
(19) 

The phenomenological parameters To and Q, characterize properties of the interlayer, 
interfacial roughness, band structure, etc. Generally speaking, they are functions of 0. 
To find the specific dependences of Tu(@ and Q,,(0), one should consider a quantum- 
mechanical model of interface scattering. Here we shall restrict our consideration to the 
simplest approximation. 

By taking into account that To, and Q,,. are of interest to us in the field of small 0, 
we expand each of T, and Qo as a power series in 0 and restrict ourselves to the first 
non-vanishing term: 

Qq(-r)(Q = Q.(0)sin2@'/2). 

To(@ = t,' Q , (0 )  2: q,' small 0. (20) 

To(@ 2: tAF Q.(6J)-qAF B E R .  (21) 

On the other hand, T,,C-~) and Q,c- , )  are of interest for 0 near IT. By expanding T, 
and Qu in powers of (0 - n). we obtain 

By using asymptotics of the kind (20) and (21) over the whole range of 0, we find the 
interpolation formulae: 

T,,(B) = t,' c0s2(0/2) T,(-,, = tAF sin2(0/2) 

~ ~ ~ ( 0 )  = q,Fcos2(~/2) =qAFsin2(e/2) (22) 

~ ~ ( 0 )  = pz  c0s2(0/2) + p,"' sin2(0/2). 
Here the various f ,  q and p are parameters of the theory. 

The difference between the interface contributions to the 'effective resistivity' p," in 
different geometries cannot result in any qualitative difference in the behaviour of the Cw 
and CPP magnetoresistance. In contrast, the fundamental difference in their behaviour results 
from the fact that the 0 dependence of ps: differs essentially from that of p,$!. 

The resistivity p $ ! ( 0 )  is a limited function and peaks at 0 = R. In the approximation 
(22): 

p $ ! ( ~ )  = tAFrLsin2(8/2). (23) 
To the contrary, p,$:'(0) increases without limit at 0 -+ n. In the approximation (22) 

it takes the form 

where we have introduced w: = t,' + q,', wAF = tAF + qAF. By way of illustration of 
the main physical features of the foregoing results, let us take a look at several important 
limiting cases. 
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4.1. Superlattices with very highly permeable perfect interfaces 

The simplest case of a multilayer with very highly permeable perfect interfaces will be our 
initial concern. Both the diffusive and specular interface scattering are suggested to be so 
insignificant that electrons move coherently through the interfaces without essentially any 
resistance, so the following condition should be met: 

& , l - W V , l -  W<<min(l,L/l,,) (25) 

where 1, = U& is the electron mean free path. In equations (13)-(18) we come to the 
approximation: 

(26) 

Substitution of equation (26) into equation (13) yields the following expressions for the 
resistivity: 

r,, 0 rr o p$: N rL sin2(O/Z) p z .  N rL tan2(e/2). 

The magnetoresistance is only due to the difference between spin-majority and spin- 
minority electrons in their intralayer transport properties, being specified by two parameters 
h, = 1,/L r L / p n .  By using the definition of the GMR magnitude 

AG = [pG(O = 0)  - pG(O = x)]/pG(O = fo 
we obtain 

We recall that equations (28) hold good at L << lSt (the spin-diffusive length); if this is 
not the case, Acpp vanishes, as shown in [E?]. There are fundamental differences between 
the CIP-GMR and CPP-GMR in their thickness dependence: the effect vanishes at L - lr in 
the former case but at L of the order of ld in the latter. With l,r >> I ,  always being the 
case, we find AcIp/AcPp rz (A+ + A-) << 1 at I ,  << L << 1s. 

The magnetoresistance versus magnetization dependence is defined by the function 

where 

As may be seen from (29) and (30). the condition GC1‘(p) < Scpp(p) is always met. In 
the thin-layers limit A, >> 1 both curves sG(p) have a sharp increase within a narrow 
range near p = 1; that is, the magnetoresistance rises sharply as the angle 0 between the 
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neighbouring magnetizations is varied through a small range AB near B = n. The value 
AB can be estimated as AB N [(A+ + A-)/At+1-]1/2 (< r, and it may be deduced that the 
GMR might occur, even though the initial magnetic arrangement (at H = 0) is far from 
antiparallel. 

Differing little from the curve GcPp(p) at h, >> 1, the curve CSC"(p) lies under the curve 
6 = p', tending to it in the limit A, < 1. In contrast, if 1- << 1 is fulfilled, the function 
Scpp(p) rises steeply from 0 to 1 near p = 0 with a characteristic length p ~ .  which, being 
defined by the equation 6cppoL~) = 1/2, is equal to po = 2[A+A-/(A+ + By this 
means the magnetoresistance may peak at a field HO less than the saturation field Hs, If it 
is granted that in fields H << Hs the relative magnetization is linear in the magnetic field 
p(H) m H/H,, the fresh damping scale is defined as 

V V Ustinov and E A Kravtsov 

Ho = 2HJA+h-/(A+ +A-)]"*. (31) 

The variations of the curves sG(p) with factor A+ appear in figure 3. 

MIM 
P i p  3. Normalized magnetoresistance S as a function of lk relative magnetization MfM, 
for different geometries in the case of perfeu interfaces. The full and broken c w e s  correspond 
respectively to the ~ I P  and cpp geometry. The curyes have been calculated for I@ = t$ = 0.9, 
qs = & = p: = piF = 0. LJl+ = 6. The ratio LJL+ has been Iaken as (I) 0.1, (2) 0.8, (3) 
50 and (4) 1000. 

4.2. Superlanices with only slightly permeable inte$aces 

Let us take up the case of strong interface scattering 

WO, W <<min{l,l,/LJ 
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in which the difference between the CIP and CPP problems is clearly defined. As to the 
CPP geometry, diffusive interface scattering is equal to specular scattering, the interface 
resistance being determined by the total probabilities of electron transmission WO and W. 
Under the condition (32) the CPP-GMR always has its origin in the interface scattering and 
its behaviour is determined completely by three parameters: wAF,  q = (wy + w!)/2wAF 
and = W ~ W ! / ( W ~ ) ~ .  By neglecting pc in equation (14). one finds 

the magnetization dependence having the form 

where 

) P p  = - 6). (37) 

Having found amp, BcPp. ycpp and Amp by an experiment, one can immediately 
identify the microscopic parameters wAF and wz by the following formulae: 

where 

5 = q + yCPP/wM. (41) 

With the CIP geometry, of vital importance is what kind of interface scattering prevails. 
If the scattering is specular, coherent reflection makes no contribution to the resistance 
(r,"" N 0). so that pCp originates only from the intralayer scattering. However, the 
probability of an electron passing through layers having different M decreases, resulting in 
a reduction in the CMR compared with (28): 

Ac" = - ( e r  tAF 

p+ + p- tAF + (A+ + A-)-' ' 

The function Sc"(p) is given by formula (29) again, but we have 

ffcP = (A+ + A-)/@+ + A- + 4fAFA+A-). (43) 
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Figure4. Theoretical (curves) and experimentd (points) normalized magnctoresistance in AglCo 
[3] a function of (MIM,)?. The experimental data for the CIP magnetoresistance (0) fits 
the theoretical curve (- - -) of kind (45) with the parameten &Ip = 0.76. Bc'' = 0; the 
experimental results for the CPP magnetoresistance (0) correspond to the theoretical curve (-) 
of kind (34) with the p m e t e r s  dW = 0.46, BCw = 0.39, yCw = -1.04. 

Alternatively, if diffusive scattering prevails (S, >> L/Zc), the behaviour of the 
magnetoresistance is determined by the total probability of interface diffusive scattering 
so = p,, + qo and we have 

U + aa- + (1 + a)a+a- 

1 +a- +a(l +a+)  
ACLP= ' 

where we have introduced a, = (sz - s,"')/s,"' and a = sY/s?' .  The magnetoresistance 
versus magnetization dependence takes the form 

where 

acIp = (U+ +aa-)/[(l +a)AciP] pcLP = aca-/AclP. (46) 

4.3. Superlatrices with arbitrary interfaces 

Generally, whatever the proportion of hailsmission and scattering at the interFaces may 
be, it can be shown that Sc"(p) is always of the form (34) but factors we', pcPp, ycpp 
as well as the GMR magnitude Acpp depend on five microscopic parameters (wAF, W E ,  
Xi) in a complicated way. In the general case. B c ' p @ )  takes the form (45), where &Ip, 
pCip as well as Aap depend on seven microscopic parameters (IAF, sy, sg. h i ) .  By 
parametrizing experimental curves in accordance with (34) and (43, one can try to reduce 
several combinations of microscopic parameters from AG, aG, pG and yG. An example of 
such a procedure with the CIP geomeby has been given in [13]. 
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We take as our example the experimental data of Pratt et a1 [3] who observe 
AC" = -0.127 and Amp = -0.415 in AdCo. The experimental data for the CIP and 
CPP magnetoresistance [3] and corresponding theoretical curves are depicted in '  figure 4. 
The fitting parameters have been found to be acPp = 0.44, pcPp = 0.39, ycpp = -1.04, 
uCIp = 0.76 and pC" = 0. In fitting we used the experimental values of the derivative 
dS/d(p*) at p = 0 and p = 1 and (for the CPP case) the intersection point of the curves 
sG(p) and SO = p2 whereby the set of parameters 01, 6, y is uniquely determined. Having 
analysed the results of the fit, we can give some conclusions about the nature of the GMR 
effect in Ag/Co [3]. It can be shown in a general way that the value pup is defined 
by the asymmetry in diffusive scattering. The fact that pCp = 0 allows us to say with 
certainty that there is no asymmetry in diffusive scattering, that is, diffusive scattering 
is spin-independent and does not depend on what kind of magnetic ordering appears in 
the superlattice ( s i  = siF = s). So the CIP-GMR originates from bulk spin-dependent 
scattering. By assuming that diffusive scattering is insignificant (s << L/Zv) and the 
equations (42) and (43) remain valid, we obtain the following estimates of microscopic 
parameters: l - / Z +  = 4.2, fAFL/l- = 0.09, tAFL/[+ = 0.41. With the CPP-GMR, it is 
significant that both interface (from specular reflection) and intralayer contributions to the 
resistivity play important parts in the magnetoresistance behaviour. Unfortunately, there are 
many unknown parameters in the CPP case, and it seems to be difficult to estimate them 
from the fitting parameters. 

5. The thickness dependence of the magnetoresistance 

The behaviour of A''' as a function of the magnetic layer thickness L essentially depends 
on the ratio of the s, and fAF parameters characterizing diffusive scattering and coherent 
penetration respectively. In the limit s, < rAF the main contribution to ACp is made 
by either interface scattering (if L / l c  << so) or intralayer scattering (if L/16 >> tAF), the 
asymptotic behaviour of Acp being given by 

There are two different damping lengths (LI 2: fml, and Lz Y l o )  in this case in the 
manner indicated in figure 5 .  If the diffusive scattering is suong and tAF < s,,, the curve 
AC"(L) decreases monotonically as illustrated in figure 6. 

As for the CPP case, there is only the damping length Lcpp Y [ ( I  - u) , , ) /uJ , , ]~~.  At 
L << Lcpp the interface contribution has a dominant role, and in the limit L >> Lcpp the 
intralayer one plays a leading part in the magnetoresistance. So we find the asymptotes. 

And Acpp(L) is a monotonic function as shown in figures 5 and 6. 
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-0.2 1 

Figurr 5. The CIP (-) and cm (- - -) mgneroresismce ratio A' as a iunction of 
L/l+ in the case of perfar interfaces. 'The curves have been calculated for L / l +  = 6, 
4 ~ ~ P ~ ~ p ~ ~ ~ . ~ ~ , q ~ ~ p ~ = p ~ ~ O . 0 0 3 . q ~ ~ ~ o . ~ ~ ~ , r ~ = r F = 0 , 9 , r A F = ~ . ~ .  

Figure 6. The CLP (-) and cw (- --) magnetoresismce ratio AG as a function of L/1+ in 
the e= of m n g  interface scattering. The parameters assumed in our wlculation are ! - / I +  = 3, 
QAF = 0.24. q: = p: =pi" = 0.4, & p! = pF = 0.07, t: = 0.2 r_F = 0.6, iAF = 0.38. 

6. Summary 

Summing up, we have worked out a semiclassical theory in which the CIP and CPP giant 
magnetoresistances are studied within a unified microscopic model. The correlation between 
the magnetoresistance and the magnetization has been analysed and formulae that describe it 
in each geometry have been derived. We found the results obtained to be in good agreement 
with the experimental data of [3]. The behaviour of the magnetoresistance ratio as a function 
of the magnetic layer thickness L has also been considered. The main features of our results 
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may be summed up as follows. 
The GMR magnitude in the CIP case and the same in the CPP case are defined by different 

sets of microscopic parameters characterizing the interface properties. Consequently, there 
is no definite relationship between the CIP-CMR and the CPP-CMR. As a rule, Acpp/AcIp I 
but it is not inconceivable that one can discover layered systems where the C I P - G m  exceeds 
the CPP-GMR. The system in which this can take place should possess rough interfaces having 
strong spin-dependent diffusive scattering. 

In superlattices with thin layers (A,, >> 1) the GMR may be observed, even if the 
magnetizations are not ordered antiferromagnetically in zero magnetic field. For this to 
happen, the angle 0 between the neighbouring magnetizations at H = 0 must exceed a 
critical value A0, which can be estimated as A0 N max{L/l,,, S,] for the CIP geometry 
and A0 z max[L/I,, 1 - W,,,) for the CPP one. 

With the proviso that L >> l,,, it is possible to expect that the CPP magnetoresistance 
peaks at a magnetic field Ho less than the saturation field H,; crude estimates give 
Ho/H, a (I0/L)”’ << 1. As yet, there have been no experimental data on the CPP- 
GMR behaviour at layer thicknesses L > lo and we consider it desirable to conduct such 
experimental investigations. 

The magnetoresistance versus magnetization dependence in the CIP geometry differs 
essentially from that in the CPP geometry as may be inferred from (34) and (45). The curve 
SCp(p) lies under the curve S = p’, while there are no such limitations in the CPP case. 

There are essential differences between Aap and Acpp in their thickness dependence. 
The first has either one or two damping lengths, depending on the ratio of diffusive scattering 
to coherent transmission at the interfaces. In the limit L >> I ,  we always find AcIp a L-I. 
Generally, there are three scaling lengths in the latter case. These are the Debye screening 
length, the spin diffusion length and a characteristic length Lcpp Y [(l - w,)/w,]l ,  at 
which the interface contribution to the resistance vanishes. In the limit 1, << L < I s f  one 
finds Acpp(L) + const. 
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